
IOURNAL OF 

GEOMETRYAND 

PHYSICS 
ELSEVIER Journal of Geometry and Physics 24 (1998) 24i1-264 

Invariants of velocities and higher-order 
Grassmann bundles * 

Dan Radu Grigore ’ , Demeter Krupka * 
Department of Mathematics. Silesian University at Opavo, Bezrucovo nam. 13. 

74601 Opava, Czech Republic 

Received 2 I February 1996 

Abstract 

An (Y. n)-velocity is an r-jet with source at 0 E IF!“, and target in a manifold Y. An (r. n)- 

velocity is said to be regular if it has a representative which is an immersion at 0 E R”. The 
manifold T,: Y of (r, n)-velocities as well as its open, Ls-invariant, dense submanifold Imm T,:Y of 
regular (Y, n)-velocities, are endowed with a natural action of the differential group LL of invertible 
r-jets with source and target 0 E R”. In this paper, we describe all continuous, Lii-invariant, 
real-valued functions on T: Y and Imm T,: Y. We find local bases of .Ls -invariants Imm T,: Y in an 
explicit, recurrent form. To this purpose, higher-order Grassmann bundles are considered as the 
corresponding quotients P,: Y = Imm T,: Y/L:;, and their basic properties are studied. We show that 
nontrivial Lz-invariants on Imm T,: Y cannot be continuously extended onto r,: Y. 
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1. Introduction 

By a velocity one usually means the derivative of a curve in a smooth manifold Y at a 

point, or, which is the same, the tangent vector to this curve at a point y E Y. Equivalently, 
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such a velocity is a l-jet with source at the origin 0 E R and target in Y. Generalizing this 
concept one may define an (r, n)-veloci~ as an r-jet with source 0 E R” and target in Y. If 
such an r-jet can be represented by an immersion of a neighborhood of the origin 0 E EP 
into Y, it is called regular, and we speak of a regular (r. n)-v&city. 

Concepts of this kind, i.e., the r-jets of differentiable mappings between smooth man- 
ifolds, the contact elements or, which is the same, r-jets of submanifolds. have been in- 
troduced in the fiftieth by Ehresmann (see references in [7]). and have become the basic 
concepts of the theory of differential invariants. and the theory of natural bundles and oper- 
ators (see [7, IO, 13.141 and the references there in). These concepts have also been applied 
in global analysis, and mathematical physics. It should be pointed out, however. that the 
problem of finding invariants of velocities and the corresponding problem of describing 
the structure of the space of higher-order velocities has not been touched in the existing 
monographs on differential invariants and natural bundles [7.13]. 

The set T,rY of (r, n)-velocities on a smooth manifold is a smooth manifold endowed 
with a right action of the differential group Li; of invertible r-jets with source and target 
0 E R”. The purpose of this paper is to characterize all continuous scalar invariants of this 
action, i.e. all real-valued functions defined on open subsets of T,:’ Y, which are constants 
on the L:;-orbits. Instead of formulating and solving equations for invariant functions we 
use a different, more powerful method based on considering the quotient space of the open. 
dense subspace of T,: Y, formed by regular (r, n)-velocities. The corresponding orbit space 
is then called the (r. n)-Grussmatm Dund/e. It is a tiber bundle over Y whose type tiber 
is the (r. tz)-Gr~tssmat~rziat~. The canonical quotient projection of the manifold of regular 
(r. n)-velocities onto the orbit space is the hct.si.s c~f’itwcrrictttts of (r, rl)-velocities. Geometric 
structures of this kind as well as their invariants have been studied by M. Krupka [ I I. 121. 

Thus, to tind all L:i-invariants it is enough to tind the projection of the manifolds of 
regular higher-order velocities onto the higher-order Grassmann bundle. We note that an 
analogous method has been applied to the problem of tinding G L,, (R)-invariants of a linear 
connection 191. 

Basic concepts of the jirst-order Grassmann bundles has been applied in mathematical 
physics. and the parametrization independent variational theory (see e.g. [ 1.3-61. Highrr- 

order Grassmann bundles have become natural underlying structures for the geometric 
theory of partial differential equations [8]. 

2. Higher-order velocities 

Throughout this paper, nz, n > I and r > 0 are integers such that n 5 tn, and Y is a 
smooth manifold of dimension II + m. 

By an (r, n)-velocity at a point v E Y we mean an r-jet .J,$C with source 0 E R” and 
target y = c(0). The set of (r. n)-velocities at y is denoted by J[,,,.,(R”. Y). Further, we 
denote 
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and define surjective mappings r:’ : T,‘Y -+ T,SY, where0 5 s 4 r, by t:‘(JL[) = Ji;[. 

Recall that the set T,‘Y has a smooth structure defined as follows. Let (V, @), 

+ = (yA), be a chart on Y. Then the associated chart (V,‘, $,‘) on TLY is defined by 
V,: = (t:‘)-‘(V), $,i = (yA, y(t, y,ti,, . . , Y~:~?...~,.), where 1 I in I i2 5 . . I i, i n, 

and for every J,‘< E Vi, 

yt;z...ik(J{Y) = Di, Diz oi,(yAt)(0)> 0 F k I r. (2.1) 

The set T,‘Y endowed with the smooth structure defined by the associated charts is called 
the manifold of (r, n)-velocities over Y. 

The equations of the mapping r,‘.’ : T,“Y + T;‘Y in terms of the associated charts are 

given by Y~i,...i, 0 rnT.‘(JiC) = .Y~iz...ik(J~C)> where 0 5 k 5 s. In particular, these 
mappings are all submersions. 

Let trr denote the translation t’ + t’ + t of W. If y is a smooth mapping of an open 
set U c W into Y, then for any t E U, the mapping t’ -+ y o trr(t’) is defined on a 
neighborhood of the origin 0 E IP so that the r-jet J,‘(v o trr) is defined. The mapping 

U 3 t -+ (T,:y)(t) = Ji(v o tr,) E TiY (2.2) 

is called the r-prolongation, or simply the prolongation of y. Since ylti,..,il o T,‘y(t) = 

Di, D;, . . Di,(vA(y o trr))(O) and Dir (yA(y o trt))(t’) = D;, (yAy)(t’ + t), we get for its 
chart expression 

Y~~iz...ik 0 T,‘y(t) = Di, Di? ’ . Di, (yAY)(t), (2.3) 

Assume that we have an element Ji[ E TL Y. Ji{ defines the tangent mapping TOT,;-’ <, 

which sends a tangent vector e E TOW* to the tangent vector TOT,‘-’ < .t to T,:-’ Y at Ji-’ 1. 

If { = <‘(a/ar’)o, then by (2.3), 

=t’di(Ji[), (2.4) 

where 
r-l 

di = C C Y{il...iki * 
k=O iI iirc...(ik I, l?“‘lk 

(2.5) 

is a morphism T,‘Y 3 Ji { -+ di (J,‘<) E T T,‘-’ Y over T,‘-’ Y. Indeed, the tangent vectors 
-- - 

di (J,‘{) are defined independently of the chosen chart: If (V, $I), y? = (yA), is some other 
chart at < (0)) then 
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and by (2.4) 

;7, = d;. (1.6) 

We note that formula (2.5) does not define a vector field on T,:‘Y since it is not invariant 
when the tangent vectors a/i3_viqi2,,.iil are subject to coordinate transformations on T,:’ Y 

Let ,f : V,:-’ + R be a smooth function. We define the ith ,fbrmcrl derilatil.e d; ,f : 
V,; + R by 

By (2.6) the functions d; .f are independent of the charts, and the definition of the ith formal 
derivative is naturally extended to functions defined on an arbitrary open subset of T,:-’ Y. 

It can be easily verified that for every smooth function .f’ : V,:‘-’ -+ R and every smooth 
mapping y of an open set U c W’ into Y, di ,f o T,: y = II, (,f o 7’,:-’ y ). In particular. we 
have for every coordinate function ?;;4.i2,,.,ir, 

(2.7) 

Using the formal derivative operators d;, it is now very easy to find the transformation 
formulas between two associated charts on T,rY. By (2.7) and (2.6), 

This formula may be applied whenever the transformation rules for the coordinate trans- 
formations on Y are known. 

We shall need a formula for higher-order partial derivatives of the composed mapping in a 
form well adapted to its use in various inductive calculations in the higher-order differential 
geometry and the theory of differential invariants. 

Let n and k be integers. If I = (it, i?, . ik) is a set of indices such that I 5 
il,iZ..... ir 5 n, we usually denote DI = DIA . D;, D;, . Let U and V be open sub- 

sets of R”. let ,f : V + R be a smooth function. and let o = ((u’ ) be a smooth mapping of 
U into V. Then one can prove by induction that 

Di\ Di2 Di, (f’ 0 u)(j) 

D,,, ... D,‘2DP,.f((;Y(t))D/i~Pa(t)... D,?(y”?(t)D,,01”‘(t). 
k=l I=(I,.I~,....II,) 

(2.8) 

where the second sum is understood to be extended to all partitions ( 11, 12. . , Ik) of the 
set (it. iz,. . . , i,y}. 

Let us write the transformation equations from (V. $I) to (V. I,/J) in the form 

-A 
?’ = F-yP). (2.9) 
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We wish to determine explicitly the functions F;;. Fjfi,, . , Fitjq...jr defining the corre- 
sponding transformation 

Lemma 1. The,following formula holds: 

(2.11) 

where the second sum denotes summation over all partitions (II, 12, . . . I,,) of the set 
(ii, i2,. . , i,y). 

Proo$ We proceed by induction using (2.7). 0 

We assume that the reader is familiar with the concept of the differential group. Recall 
that the r-th dz$erential group of[wI1, denoted by LL, is the Lie group of invertible r-jets with 
source and target at 0 E [w”. The group multiplication in LL is defined by the jet composition 

L; x LI; 3 (J($, J,‘S, + J&x 0 Jo’f3 = J,‘(a 0 p, E LL, (2.12) 

where o denotes both the composition of mappings, and the composition of r-jets. The 
canonical (global) coordinates on L:; are defined by 

a! ,,12...i~(J~~) = Di,Di, ...Di,~‘(O)- 1 5 k 5 r, 1 5 il 5 i2 ( ... 5 ik 5 n, 

(2.13) 

where cyj are the components of a representative CY of Jia. 

Lemma 2. The group multiplication (2.12) in LL is expressed in the canonical coordinates 
(2.13) by the equations 

where a!. fjIz...i, = ak. rjr2,..i,(Jia). bf,i,...i, = “~,iiz...i,(Jt$B)~ ‘f,i2...jr = a:,jq...i, (Ji(Cr 0 B)), 
and the .wmd sum is extended to ail partitions (I,, 12, . . . , I,,) of the .yetF(il, i2, , i,s 1, 

Prooj We apply (2.8). 0 

The manifolds of (r. n)-velocities T,:Y is endowed with a smooth right action of the 
differential group LI;, defined by the jet composition 

7’,;Y x L; 3 (J,‘<, J,‘a) + J;< 0 J,‘a = J,‘(< O(Y) E T,‘Y. (2.15) 
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Let us determine the chart expression of this action. To this purpose we use the canonical 
coordinates u; (2.13) on LL. 

Lemma 3. The group actinn (2.15) is expressed by the equcrtinns 

\'A _ \.4 ;A 
?i,i?...i, c uf; 0;; ";;;\.;.;,2...;,,' (2.16) 

,‘=I (II .II.“‘.I,,) 

where the second sum is e,xtended to (111 pnrtitions ( 11 . 12, . . . I,,) ofthe set (ii . i?, , i, ). 

Proof To prove (2.16), we apply (2.1), (2.15) and (2.8). 0 

Note the following formula. If Y is a smooth mapping of an open set U c 1w” into Y. 
U’ c [W”an open set, and CY : U’ + I/ a smooth mapping, then for every t t I!‘. 

T,:‘(y 0 a)(t) = (T,:y)(cz(t)) 0 Ji(tr-,(i) o (Y o trt). (2.17) 

To derive this formula, we use definition (2.2) and the identity Ji(v c (Y o tr,) = JJ( y c’ 
tr,(,))oJ~(tr_,(i) oootri). In particular, ifa is adiffeomorphism, then Jt$(tr_,(,, OUI an,) E 
L:;, and (2.17) reduces to the group action (2.15). 

3. Higher-order Grassmann bundles 

An (r, n)-velocity Ji< E T,FY is said to be regular if it has a representative which is 
an immersion. If (V, I/I), + = (yA). is a chart, and the target t(O) of an element JA< E 
T,rY belongs to V, then J,‘< is regular if and only if there exists a subsequence 11 = 
(VI. ~17, . . I),,) of the sequence (I. 2. . , n.n + l.....~ +m) such that detD,(y”” ‘7 
c)(O) # 0. Regular (r, n)-velocities form an open, L;i-invariant subset of 7’,;Y, which is 
called the man$~fom of regular (r. n)-v&cities, and is denoted by Imm T?F Y, Recall that 
Imm T,: Y is endowed with a smooth right action of the differential group Li;. defined by 
restricting (2. IS), i.e. by 

Imm T,FY x L:; 3 (J/j{, J~cx) -+ Jh{ o J~u = J(;(< O(Y) E Imm T,rY. (3.1) 

If (I;, . ‘I! f,lZ’ . ‘. .a”. ,,rl,,,i, are the canonical coordinates on Lr,, this action is expressed by 
the equations 

- ,1 A 
!” =?‘. 

-A 
?li,i?...i$ = c u:; u;; . “;,f;‘;,2 “.,,, (3.2) 

p=l (Il.12 . ~I,,) 

In the proof of the following result we construct, among others, a complete system of 
L:i-invariants of the action (3. I ) on Imm T,: Y. We use the associated charts on Imm T,: Y, 
which are defined as intersections of Imm T,: Y with associated charts on T,: Y. 

Theorem 1. The group action (3.1) defines on Imm T,: Y the structure of a right principcrl 
L:; -bundle. 
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Proof We have to show that (a) the equivalence R “there exists .lio E Li; such that 
J,‘< = J,‘x o J~(Y” is a closed submanifold of the product manifold Imm 7’,: Y x Imm T,: Y, 
and (b) the group action (3.1) is free. 

(a) First we construct an atlas on Imm T,’ Y, adapted to the group action (3.1). 

Let (V, $1, $J = (yA), be a chart on Y, CV,‘, @iI, Q,‘; = (yA. $. ‘. . yjfj2...j,.), the 
associated chart on Imm T,FY. We set for every subsequence II = (VI, u?, . . , u,~) of the 
sequence(l,2 ,..., n.n+ I ,.... n+m) 

W” = (.I;[ E V,: I det (y,“‘(.$<) # 01. 

W” is an open, LL-invariant subset of V,:, and 

(3.3) 

U W” = v,:. 

Restricting the mapping r,/~,’ to W” we obtain a chart (W”, I/J;). 
The equivalence R is obviously covered by the open sets of the form W” x W”. We 

shall find its equations in terms of the charts (W” x W”, @,: x I)[). Let us consider the 
set R n (W” x W”). Assume for simplicity that v = (1, 2, . , , n). A point (Ji{. J,‘x) E 
W” x W” belongs to R n (W” x W”) if and only if there exists Jia, E Ls such that 
J,‘[ = Jt$x o Jia! or, which is the same, if and only if the system of equations (3.2) has 
a solution a+ a* II - !,I?’ . ” , CI~,~~.,,~, Clearly, in this system jA. ji;“, j&, . . , j,ti2,,,i, (resp. 
YA 

1 Yp, ’ 
A yA A -) are coordinates of J,‘{ (resp. J,‘x). But on W”, det (v”) # 0. p,p>’ . . 1 ?1,‘,,,?...[‘, 

where 1 5 i, k 5 tz. Consequently, there exist functions z,j : WL’ + R such that z,i #’ = 6;. 
Conditions (3.2) now imply, for A = k = 1,2, . . tt, 

which allows us to determine the canonical coordinates of the group element J,$lo’a! by the 
recurrent formula 

(3.4) 

Taking A = CT = n + 1, n + 2, . . , n + m in (3.2) and substituting from (3.4) we get 

.i(jz...j, = C C u::“:i '.'"~~.Y~j,...j,~ (3.5) 
p=l (II.12 . . . I,,) 

where the group parameters ui are all certain rational functions of $ jz...j,, j$ jz,,, i,. These 
are the desired equations of the equivalence R on W” x W”. 
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Now define a new chart on Imm T,‘Y x Imm T,rY. (W” x W”. @“), where 0” = 
(?.A. ?;;‘. V?. A 

.JfJz’ '..'_VI,j2...jrq @", C$, @Ij2, . . . @EjL...,, . .P. ?_I,. .$,, . . .Tf,,l...,, ) is 

the collection of coordinate functions. by 

In terms of this new chart, the equivalence R has equations 0” = 0. QT. = 0. and is ,,‘2”‘> 
therefore a closed submanifold of Imm T,: Y x Imm T,: Y. 

(b) Assume that for some J,‘< E Imm T,FY and ./,$a E L:;, J{< o Jhm = Ji<. Then 
Eqs. (3.2) reduce to 

which gives us, using (3.4), rrp = 6:. a[;, = 0. ..a!’ I, Q.4, = 0. i.e., J~CY = Jiid R,, 

This completes the proof. n 

We have the following corollaries. 

Corollary 1. The orbit space P,: Y = Imm T,; Y/ LI; has a unique smooth structure such that 
the canonical quotient projection pi; : Imm T,F Y + P,; Y is (I submersion. The dimension 

of f,: Y is 

dim P,:Y = m 

The following corollary solves the problem of finding all LL-invariant functions on 
Imm T,: Y. It says that the projection p; : Imm T,; Y + f,yY is the basis of L:;-invariant 

functions. 

Corollary 2. Everyv L:;-invariant,function ,f : W + R MAerr W c Imm T’Y is an L’- , 
invcrricmt open set, can be factored through the projection mupping p:; : Imm f,: Y 

II 
4 P,YY. 

Now we are going to construct charts on Imm T,: Y adapted to the right action (3. I ) of the 
differential group L:i. We may consider, for example, the charts (3.3) with u = ( I, 2. . II 1. 

Theorem 2. Let (V, ti), I/I = (yA). be a chart on Y. (V,:. $I:;). 4’/:; = (J::~~ ,,,, I ), s 5 r. the 

associated chart on Imm T,‘Y, and W = {J,‘< E V,:l det (yi(J,‘<)) # 0). I 5 i. ,j 5 II. 

There exist unique,functions wC, ~$7 , ~1,: j2. . . . , wfi j2,,,j,- dyfined on W such thut 

(3.6) 
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Thepair(W,@),where@ =(w~,w~,,w~,P~, . . . . ~~,P~,,~~~.~‘,.~~,.~~,j~....,~~,j~...j,_)~ 

is a chart on Imm T,‘Y. The functions wO, wiq , w,; j2, . . . , wjq j,,,,j,_ sati& the recurrent 
formula 

(3.7) 

and are LL -invariant. 

Proo$ We proceed by induction. 
(1) We prove that the assertion is true for r = 1. Consider the ,pair (W, O), 0 = 

(w”, t$,, y’, yj,), where wU = yO, wj’ = zjkyf. Obviously yp” = y; w;, which implies 

that (W, @) is a new chart. Moreover, I$’ = .$dk y” = zfdk w”. It remains to show that the 

functions w; are LA-invariant. Since the group action (3.2) is expressed by j’ = Y’. .V” = 

y”,$ = j i apyj, jlo; = a;yy, the inverse of the matrix $ = aj!,yj is cq - ~~ s, =’ - -‘bp where bf 

stands for the inverse of al!. Hence 157 = $j$ = zTb:u:yg = z:yi = WY proving the 
invariance. 

(2) Assume that formulas (3.6), (3.7) hold for k = r - 1. Write (3.6) in the form 

Then 

(7 

YPl P?..'PkPk+l =dPk+IY;,p2...pk 

q=l (ll.I2,....I”) 

jl j2 
+ -VI, YI2 . . 

j, L,+ I s .Y,q~~k+I~jy+Id.~Wjqj2...jy). 

In this formula we sum through all partitions (It, 12, . . . , Iq) of the set (~1, pz, . . . , pk J. 
On the other hand, when passing to all partitions (.I1 , 52, . , Jq) of the set ( p 1, ~2, . , pk. 

Pk+l 1 we get 

m 
J’P, P?...Ph Pkil 

q=l (II.IZ . . . . . I<,, 

y=l (J1,52 . . . . . A,) 

(3.8) 
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and we see that (3.8) has the same form as (3.6) where IL;: jz,.,jrjr+, = ~~~+,d,u$ j2,,, ji. 
Uniqueness is immediate since w~,~~...~~~~+, may be expressed explicitly from (3.8). 

It remains to prove the invariance condition rI5 j2...j, = WV Ji JZ---.is 

Since the points .I,‘< o -I;;a and _lo’[ belong to the same orbit. their coordinates satisfy 
the recurrence formula (3.5): 

.qi2...;, = c c u:‘; u;; “;i::?:fi,jr . . . . , ,’  
5 = 1. 2. . , r. 

p=I (/),I2 _..., I,,) 

in which 

q u;,j& = cl, 
;x 
.?ili?...j, 

p=2 (KI.K2.....Kp) 

for all t 5 s (see (3.4)). Here (It. Il. . I[,) is a partition of the set (ii, i?. i.,} and 

(KI. K?..... K,,) is a partition of the set (kt. kz, . k,}. Using (3.6) we can write 

where (It. I?, . . . , I,?) is apartition of the set (it, iz.. . , i,) and (J), J?, , J/) is a par- 

tition of the set (jt , j2, . . , j,,}. This gives us the equation 

Now we wish to determine the terms ~f:~~...~~ on the right-hand side with hxed p. Chang- 

ing the notation of the indices, we get the expression 

from which we see that UI~,~~...~~ are contained in every summand with L/ 1 17. Thus. the 

required terms are given by 

q=/‘(/,.Iz . . . l,,)(Jj.Jr . J,) 

In this formula (It, 12, . . . . Zq) is a partition of the set (i 1, iz. . . , i, }, and ( JI . Jz. . J,, ) 
is a partition of the set (jt . j2. . , jq ). 
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Now we adopt the following notation. If I = (il, i2, . . . , i,T) is a multi-index, then 
(ZI, Z2,. . , I,,) - I means that (II, 12, . . . , ZP) is a partition of the set (il, i2. . . . , i,). 

As before, let Z = (il, i2, . . . , i,), and let p be fixed. We wish to show that 

C 

C " .q.$ . . . "Ip -jP zujqjz...j,, 

(Il.l?,...,I/?) 1 

= 2 c c ":;u+++q2 "..Y;> 

C 

Wfrt2...t,>. (3.10) 
4=P (II.12 . ..I Iq)(JI,J2 ,..., .JP, 

Write the transformation formula (2.16) in the form 

III 
.v/” = C C ~i:~~~ “.a~~~~j2,..jp, (‘1, z2,. .. 1 ‘p) - ‘. 

p=l (II.12 . . . . . I,,) 

Using the same notation, we have 

where (II, 12, . . . , ID) - I. Thus, 

( c 4’;; y; . . . y,,, -fp w&...t,, 
(II.12 . . . I,,, 1 
( IfI I = c c jl.1 A.2 

al,., al,,? . .l$:; 6, 
ql=l (~1.1.~1,2 . . . ILy,) ) 

where4 = (~I,I, j1.2,. . . , jl.,,L J2 = (j2.1, j2,2,. . , j2.q2), . . .d J/, = (j,,~, jp,2,. . , 
.ip.qr 1. 

This expression can be written in a different way. Notice that since (I,, l, Z;,2, . , z;,~, ) 
^r Zi, then 

~~l.l~~l.2,~~~,~l,q,~~2.l~~2.2~~~~~~2,q2’...’~p,l.~~~.2,~~~,~p.yp~-~, 

III I + IZ2l + ‘.’ + lIpI = III = s, 
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andifwedefineq =ql+q2+...+qp,wegetp Fq i lZ~l+llzl+~~~+lf,l = Ifl=.s. 
Now, having in mind the corresponding summation ranges. 

c 711 ;h -f,, 
)‘I, ?I; . . Y,,, 

0 
wt,t2...t,’ 

(l1.I: . . I,,) 

=c A.1 jl.2 h,, 
“I I,, ul12 . 

ht, j2.1 jz.2 
‘U, UI a, 

I.y, 1 I 2.2 
.‘.(I,, - 

__I,? 

JIW,J ,tl ,t? x ..‘U, 
,f/’ 0 

,,,y,’ JJ, Jj2 . ? J,, “t, t?...t,’ 

If we denote 

, jl.,, . j2.1. j2.2, . . 1 j2.qz . . . 

, . 

. 3 j,.1..&.2. . . .._ip+) 

1 ~,,.I, I,,,, . . I,).‘,,, 1. 

it is immediate that (PI, Pz, . . . Pq) - I, and 

This proves (3.10). 
Returning to (3.9), and substituting from (3.10) we get a basic formula 

Now it is easy to show that ii$ j2,,,j, = UJ~ j, ,,,,,, provided GJ”I j,,,,j, = I$ j2.,, ii for all 
k 5 s - I. 

Ifs = I. we get Ti’,’ (6: - wJy ) = 0, and since the matrix _V/ is regular, “7 = ~1:. 

Ifs = 2, we have j/,‘iL(G~ - w:) + $:jI:(WJ4 jz -,u$‘~) = $:$(WT, j2 - u~j:,,~) = 0. 

which implies, again using regularity of the matrix $, that ri$ j2 = UI,“, j,. 
Now assume that ikJT j,..,j, = wJT i2,..,ir for all k 5 s - I. Then (3.11) reduces to 

J”,’ -j . j,, (W” 
, ./I J2...js - wJ”I jz...Js 1 = O, 

which gives us 15; J2,,.j - wJ~.i2.,.jr = 0 as required. 
This completes the iroof. 0 
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Denote 

A. = -!d. I ‘,, J’ (3.12) 

Properties of the group action of LL on Imm T,‘Y can now be summarized as follows. 

Corollary 3. The group action (3.1) is expressed on W by the equations 

p=I (11.1~ . . . . . I,>) 
-0 
wjl j:...jr = wxj2...j, t 0 5 s 5 r. 

Equations 1uj: j, . ..j.$ = CJT jz ,.,j,, 3 where Cj: j?...j, E R are equations of the orbits of this action, 

and the functions y’ , UP ,, 52.., j represent a complete system of real-valued Ll; -invariants on 

W. Moreover, each of these ikariants arises by applying a sequence of the vector,fields A; 
to the invariants wD. 

Our aim now will be to express the vector fields Ai in terms of the adapted charts (FV, @) 

(Theorem 2). 

Corollary 4. The vectorjield A; has an expression 

Proof We proceed by direct computation, using (2.5) and Theorem 2. 0 

Note that at every point of its domain, the vector fields Ai (3.12) span an n-dimensional 
vector subspace of the tangent space of Imm T,‘-’ Y, determined independently of charts. 
Indeed, if (V, $I>, and (v, 4) are two charts, then by (2.6), 

2; = j;& = +& = @;dp = &@&, = j;y;Ap. (3.14) 

In the following corollary we use these vector fields to derive the transformation properties 
of the functions w~,~~,..~~. Denote P = (PJ!), where 

pJ! = E, + wJg!&. 
ayJ 

Taking r = 1 in (3.14) we get 
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from which it follows that 8; = ?fyy Pi ~ tir = i~y,~A,ti”. The first of these conditions 
implies that the matrix P is regular, and its inverse, P-’ = Q = (pi). satisfies 

Q;. = 5’ yi. 
./. s 

From the second condition we derive the following formula cl,! = Qy A, 6”. 

Corollary5 Let (V, $), $ = (yA) and (V, $), $ = (7”) b e t M’O charts on Y such thut 
V f’ v # 64. Consider the associated charts (V,:. I/I,‘;) aud (c,:, $h) and the charts ( W. @ ) 
und (I@. 4) on Imm T,: Y. Let the trcrnsformation eyuutioxs ,from (V. + ) to (c, $ ) he 
kt,rillen in the,fi)rm 

Proof By hypothesis, det($) # 0, hence det(.$) # 0. Therefore, using (3.7) we get 

Cl!’ 
fjf:...tAii_l = ZfL+, S:~jti~,ir..,ik = ,7fk+, .VOZ{dj@j;;2.,,ii = Q:i+, ApG);;2._.;l. Cl 

A point of P,: Y containing aregular (r, n)-velocity 1; < is called an (r. n)-contact element. 
or an r-contuct element of an n-dimensional submanifold of Y, and is denoted by [J,;‘< 1. 
As in the case of r-jets, the point 0 E W” (resp. c(O) E Y) is called the source (resp. 
the tmrget) of [J,J<]. The set Gz of (r, n)-contact elements with source 0 E R” and target 
0 E R’rfr’r, endowed with the natural smooth structure. is called the (r, n)-Grc_lssr?2c~nrzi~1ll, 
or simply a higher-order Grassmannian. It is standard to check that the manifold P,: Y = 
Imm T,: Y/ L:; is a fiber bundle over Y with fiber Gi;. P,: Y with this structure is called the 
(r. n)-Grcrssmannian bundle, or simply a higher-order Gmssmannian bundle over Y. 

Besides the quotient projection p,!; : Imm T,rY + P,: (Corollary 1) we have for every 
.s, 0 5 s 5 r. the canonicalprojectiorl of PLY onto PiY defined by p:;“([.Ji<]) = [J,‘<]. 

Now we are going to introduce some charts on the manifold of contact elements P,: Y. 
To this purpose we consider the adapted charts on Imm T,: Y. ( W. 0). 

’ = (““3 wg,. “E,pz . . .? u'~fp~...pr3 xi3 JI,. ?.jI,2. '. . ?fJ,j2...j, ). 

introduced in Theorem 2. We denote l@ = pi;(W), and if JL< E W, we define 

6 = (.\;I. 9. 75;, lLjYj2,. . , ?i$ j2...j,) 

by 

.T’([J~~l, = y’(Jo’{). ‘j~,jz...j, (tJ,‘Cl) = ulK jl,,.j, CJ($<). (3.16) 

Then the pair (l@, 6) is the associated chart on P,: Y. In terms of (W. 0) and (%‘. 6) 
the quotient projection p,’ is expressed by the equations 

?;’ 0 p;; = ?‘i, &I: j2...j, O PL = u'jq,j?...ji. (3.17) 
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Consider a point J,‘C E W, and the vector subspace of the tangent space T,;jcJ;;oP,‘Y 
spanned by the vectors TJ;( p; . Ai (J,$<), where the vectors A; (J,‘[) are defined by (3.13) 
and (2.5). Indeed, this vector subspace is independent of the choice of a chart used in the 
definition of d; . It follows from (3.13) and (3.17) that the vector field A; is p:-projectable, 
and its p,‘-projection is the vector field 

p=O jl 5 jzi,..ij,, 

Thus, we have the following commutative diagram: 

Imm T,: 5 TImm T,L-’ 

4 lo:; J TP:, 

P;Y 5 TP,;-’ Y 

From now on we adopt the standard convention for writing fibered coordinates, and we 
omit the tilde over the coordinate functions on the left in (3.16). Then the coordinate func- 
tions of the chart (I@, 6) will be denoted simply by 6 = (y’ , w” , WI , w/: j2, . . , UJ~, j2,., j,. ). 

Let us consider two charts (V, $), @ = (yA), and (v, $), 4 = (yA), such that V n 
v # 0, and the associated charts (VL, +L) and (v,‘, I,$) on Imm T,‘Y. The transformation 
equations for the corresponding associated charts on P,rY are given by WiL;i~.,,ilii+, = 

Qi:,, +~j’l~~.,.;~ (Eq. (3.15)). 

4. Scalar invariants of (Y, n)-velocities 

Our aim in this section will be to describe all continuous LL-invariant, real-valued func- 
tions on the manifold of (r, n)-velocities T,‘Y. 

As in the case of regular (r, n)-velocities, we denote by ,oL : T,: Y -+ TL Y/L:, the canon- 
ical quotient projection. The quotient set T,cY/LL will be considered with its canonical 
topological structure; then p,’ is an open mapping. The set Imm T,‘Y is an open, dense, sub- 
set of T,: Y. We have the canonical projection n; : T,‘Y/Li + Y, as well as its restriction 
71,: : Imm T,LY/L;; -+ Y to the (r, n)-Grassmann bundle P,rY = Imm T,‘Y/LL, which are 
both continuous. These mappings define a commutative diagram 

PJ Y is an open, dense subset of T,’ Y/L:;. Indeed P,’ Y is open in T,: Y/L:, by the definition 
of the quotient topology, since Imm T,‘Y = (pg)-’ (P,: Y) is open in T,‘Y. If [ J~xo] E 
T:Y/LL is such that [J~xo] y? PLY, and W is a neighborhood of [Jixo], then (&-l(W) 



is an open set in T,:’ Y containing [.I; x0] as a subset. Since lmm ‘I’,: Y is dense in T,:’ Y. 
(p:;)-’ ( W) f’ Imm T,: Y is a nonempty open subset of Imm r,: Y, and since p:; is open, the 
set p;;((~,‘i)~l(W) n Imm T,:Y) is open in P,rY. But ,~$((p:i)~‘(W) 0 Imm T,rYl c W 
which means that W contains an element of the set P,\ Y. 

Any continuous function on a subset of Pi Y defines, when composed with the quotient 
projection p,!; : Imm T,: Y * f,: Y. an L;;-invariant. continuous function on the correspond- 
ing subset of Imm T,:‘ Y, and vice versa, any Lii-invariant. continuous function on an open, 
Li;-invariant subset of P,: Y can be factored through p:;. Since the values of a continu- 
ous, real-valued function on T,: Y/L;; are uniquely determined by its values on P,: Y. the 
projection p:; is the hcrsis r!f‘L:;-irlvcrrimrlr~frl~tiolls on T,:‘ Y. 

It is now clear that our problem of finding all continuous L:+invariant, real-valued function 
on T,:Y is equivalent with the problem of finding continuous functions on open subset of the 
quotient T,: Y/L:;. This gives rise to the problem of UMI~~IIUOUS pn~lor~@orr of functions 
on P,; Y to the quotient space T,: Y/L:, 

First we need to discuss separability of the points on T,: Y/L:;. It is easily seen that the 
quotient topology on T,FY/Li; is root Hausdorff. 

Note that any two points [Jixo], ]./{x] E T,rY/L:; such that x0(0) # x(O). can always 
be separated by open sets. This follows from the continuity of the quotient projection ofir,‘!‘, 
and from separability of Y. To study the situation in the fibers. we prove the following lemma. 

Proof The fiber (z~~)~‘(~) = (p:I.‘)-‘((nR,“)-‘(~)) over J E Y in T,rY is endowed 
with the induced chart (V,:, $,!i), #i = (I;‘, xi\, $ j2, . y;: jr,,, ;, ). The coordinates 
7” .7P ,, ,l... is of the points of the orbit [J~xo] are given by (2. I6), 

where JULY E L:;, Jia = (uj, . uj, j2. , ui, j2..,j, ). Thus. .V” = .I ,A ; A ,.b ./IJ?....l< = 0, which 
means that the orbit [ J,‘xo] consists of a single point. Let W be an L;i -invariant neighborhood 

of the point J{xo. We show that each orbit in (7,>“)-’ (y) has a nonempty intersection with 

W. Then we apply LI;-invariance to obtain the inclusion (r~“)-‘(~) c W. 
Let usconsideran arbitrary element Jix = (y”. yf. yij2. . . . , J;{~~,,,,,) E (T,‘;“)-‘(J). 

and a one-parameter family of velocities J(; x o Jhj& in (s;i.‘)-’ (y) detined in components 

by 

p* = (&). &(r’. t*. , t”) = 7r’. 

where 0 5 7 5 1. Then J,$BT = (~6;. 0.0,. . . ,O). and by (2.16). the f,i;-orbit of Jix con- 

tains the pomts Jix o J,‘& = (J -A. j,,{. $ i2, . . .F,;~,j,... j, ) given by J -A = \‘A ._p. Iz.z 
,,lJ”‘l, 

7” vp. ,,,,,,, i,. Clearly, for sufficiently small r. Jix c Jip, E W. 
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This shows that the orbits passing through any neighborhood of the point J,‘xo, where 

x0(0) = y, fill the whole fiber (r;‘)-‘(y). 0 

Consider a point y E Y, a chart (V, $), @ = (yA) at y, and the LI;-orbit [Jixu] of 

the velocity J,$xu = (yA. O,O, . . , 0) E (r:“)-‘(y). Lemma 4 shows that any neighbor- 
hood of the orbit [J~xo] E T,‘Y/Li contains the fiber (n,‘)-‘(y) in T,‘Y/LI; over y. This 
proves, in particular, that no point of (nR)-‘(y) can be separated from [J,‘xo] by open 
sets. 

This gives us the following theorem saying that if a continuous invariant is defined on a 
fiber in T,: Y, then it is constant along this fiber. 

Theorem 3. Let W be an open, LL -invariant set in Imm T,’ Y, ,f : W + [w an LL -invariant 

function. Assume that W contains two regular velocities J,‘{. Jix with common target y = 
[ (0) = x (0) such that f (J,‘{) # ,f (.I; x). Then f cannot be continuously prolonged to 

the3ber (t:‘)-’ (y) c Imm T,;Y. 

Proof Indeed, since R is Hausdorff, any continuous, LL-invariant, real-valued function 
takes the same value at the points which cannot be separated by open sets. Assume that .f 
can be prolonged to the fiber (r:‘)-’ (y) c Imm Tr: Y. Then by Lemma 4, f is equal along 
the fiber r:‘(y) to ,f (J,‘xo) = const, which is a contradiction. 0 

In particular, none of the LL-invariant functions w,: jz,,,j, (Theorem 2) can be prolonged 

to a fiber (rL’)-’ (y). 
Now it is immediate that each Li-invariant function on T,:Y is trivial in the following 

sense. 

Corollary 6. A, continuous function f : T,‘Y + R is LL -invariant if and only if f‘ = 
F o t;‘, where F : Y + R is a continuous function. 

Appendix A. Regular (2, n)-velocities 

As before, Y denotes a smooth manifold of dimension n + m. In this section we consider 
the manifold Imm T,: Y of regular (2, n)-velocities on Y, and the Grassmann bundle P,TY. 
We wish to collect in an explicit form all basic formulas concerning charts and invariants 
in this case, which will be important for applications. 

If (V, yk), @ = (yA), is achart on Y, define V,’ = (t:.‘)-‘(V) and $2 = (yA, $, y;) 

where 1 I A 5 n +m, 1 ( i I j I II, by the formulas yA(Ji{) = yA([(0)), Y,~(J~{) = 
QyA([)(0), $(J~{) = DiDj(vA<)(0). If (v, $), 6 = (yA), is another chart on Y, and 

the transformation equations are written as _jA = FA(yB), then 

YA = FA(_yB), aFA B -A -A - _ a2FA aFA 
.vi - ayB Y; 3 yi.i = ayBayC 

---y~yJc + - ayB Ylf (A.11 
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on V,; f? c,? (see (2.9)-(2.11)). If f : V,f -+ R is a smooth function, we define a function 

di ,f’ : V,f + R by 

This function is called the i th formal derivative of ,f’. In particular, d; yA = Y,~. Lit ?‘;‘I = ~6. 

By definition, rank(#(J~<)) = n at every point Jo?< E V,f. Thus, there exists a sub- 

sequence I = (Al, A?, . , A,,) of the sequence (1,2, . . II. II + I, n + m) such that 
det(y,e’(J,‘<)) # 0. Denote V,?‘) = {J,‘[ E V,Fl det(~f’(.J~~C)) # 0). If $,z”’ is the 

restriction of $,f to V,;“‘, then the pair (V,f(‘), @,z(‘)), p!r,y(” = (J,“, y;“. y,$). is a chart on 

Imm T,#?Y, and 

U v,“” = v,;, 

By (2.14), the group multiplication (Jia, 5028) + J,‘cr o Ji/3 in the second differential 
group Lz of R” is given in the canonical coordinates by 

(.” = b!la” 
/ 1 P’ 

cx. = b!.a” + b?‘b!ak . 
1J ‘J P 1 J /‘cl (A.2) 

Indeed, in this formula ai, u& (resp. br , b:, resp. $, c:~) are the coordinates of J~CX (resp. 

JiB. resp. Jia o Jip). Li acts on Imm T,‘Y smoothly to the right by the jet composition 
(Jolt o .J,fcz) + 5021 o Jicz. This action is expressed by 

where xA. y,! , y,q are the coordinates of a velocity Ii<, and J -*. T,!. 7,; are the coordinates 

of the transformed velocity Ji[ o J,‘w. 
Now we are going to construct an atlas on Imm T,f Y, adapted to this group action. Given 

a chart (V. $), I/I = (yA), we note that the action (A.3) preserves each of the sets V,f(‘). 
Indeed, if Jo?< E V,f”‘, then by definition, the matrix yl!’ = y,*‘(Jt[) is of maximal 

rank, and the second equation of (A.3) implies that the matrix .Vf’ = J:;’ (Ji(<cr )) of the 
transformed point is also of maximal rank. 

Consider for example the case I = ( 1.2, . , n). Then det($) # 0 for 1 5 i, j 5 II 

(i.e. on V,f”‘). We define smooth functions ;; : V,ftl) + R by $~;f’ = 8;. These functions 

form a regular matrix on V,?‘). Eqs. (A.3) then give for A = k = 1.2. . . . tz 

A -I’ =a” ..pY, I * Zf”tj = zfy&a!)a~ + ?,~~~ll,~. = Z~‘~,qZ~y~T.~~~ + foci. 

and for A = CJ = n + 1, n + 2. . . m 
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Since the second formula gives us the relation ?j..Y,? = zjyp, and the third one implies 

i!,LZc(jc -2tYC.Tfj) =_YiqZuPZ$ -Z~V,-Y~qZLZ$ =Z,"ZzCYiq -ZfY~Y~q)3 

we finally get 

y = Y , -A A -i ;D s CJ 
ZjJi = ZjY, 9 

and ?:Z”;(_j$J - $y&yfj) = z~z$(Y;~ - z,kyf y&). Therefore, the functions 

yi, w0 = y”, w; = z;y;, u1; = zpz; ($& - zfl.;y;J (A.4) 

are constunralong the Li-orbits in V,f(‘) c Imm T,‘Y, and the functions y' , w” , wp, w;, .Yj, 

yjk define a new chart on the set V:(r) adapted to the group action of Li. The right action 

(A.3) is expressed in terms of this new chart by y’ = y’, 13 = w”, ti: = w:, j,! = 

y:af, j$ = _yjqu,?ay + y$c.. The functions (A.4) are components of the quotient projec- 

tion p,: of the manifold of regular (2, n)-velocities Imm TzY onto the (2, n)-Grassmann 

bundle P,f Y, and form a basis of Li-invariant functions on V,f (‘I. 
A direct interpretation of the coordinate functions (A.4) is obtained as follows. Let 

(V, @), $ = (xi. Y”), be a chart on Y, and let 3021 E V,?“‘. We assign to the 2-jet Ji5. 
an element Jicr E Li by means of a representative cr satisfying, in addition to the condi- 
tion a(O) = 0, the following two conditions $(Jia) = Dia”(O) = yf(Ji<), ai;(Jiol) = 

Di DjoS (0) = yfj (J,‘<). Then it is easily seen that 

“;.(J&-‘) = &(a-Q’(O) = $.(J&), 

ai,(Jiap’) = D,D,(a-l)‘(O) = -z;!(Jj<)z”r;a~(J~<)yi;(J(f{), 

and we get for the coordinates of the 2-jet J,‘({ o a-‘) E Vi(‘), by (A.4), 

y’(J& OK’)) =y’(.&), y;(J& OK’)) = Q, y$(J& OK’)) = 0, 

yO(J& 0 01-l)) = wD(&), y;(J&{ 0 (Y-1)) = w;<J&,, 

y:J($(5. 0 a-‘)) = w;(&), 

wherek=1,2 ,..., n a=n+l,n+2 ,..., m. This represents the desired interpretation 
of the functions (A.4) as jet coordinates of the 2-jets Ji< o Jia, with J~CX determined by 
the considered chart. 

One can determine the transformation formulas from $,‘(J,“({ o a-‘)) to $i(Ji({ o 
(Y-l)), with obvious meaning of 15. These formulas illustrate the well-known fact that the 
higher-order Grassmann bundles have a relatively complicated smooth structure. Consider 
an element Ji< E V,2(‘) n V,,2”’ . The corresponding computations for Ji[ E V,“J’ n c:(‘) 
with arbitrary I, J are quite analogous. We have 

$,f(J;([ o 6-I)) = $;(J,f(c o (Y-’ o CC’)) = $,f(J,“(< o (II-‘)) o J;(aG-‘)) 

= $,2($,2)-‘(+,f(J;(< 0 w-‘) o J&x&-‘))). 
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To derive explicit expressions, one has to substitute for the group multiplication (A.2). the 
group action (A.3), and the transformation (A. 1) in this formula. Denoting 

we get a regular matrix P = (P,?). Let Q = P-’ = (Qi) be its inverse. Then 

.v:’ = p:/ J;’ 1 ;; = Q;::. 

After a tedious but straightforward calculation we get the following result. Given the trans- 
formation equations on Y. _$ = F”(yl’. y”). 7” = F”(y”. y”), then on V,:(” n v,f”“. 

Clearly. these equations represent the transformation formulas for the induced charts on 
the (2. n)-Grassmann bundle P,fY. 
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